
EXPRESS rule writing

Lillehammer
Sunday 6th June 1999

EXPRESS Rule writing 2

Agenda

• Rule selection
• Rule writing
• Common problems
• Questions and answers

EXPRESS Rule writing 3

NOTICE

• Usage of examples from current STEP parts is for
instructional purposes only, there are no value judgements
associated with these selections. However, where parts
have used invalid EXPRESS these errors have been
reported.

• This course uses the concepts from the proposed ISO
10303-11TC2, which was produced to resolve ambiguities
in the EXPRESS language. In many cases the common
problems we discus are due to ambiguities in the
EXPRESS language, not poor modelling.

EXPRESS Rule writing 4

Acknowledgements

• Thanks to the following for providing example
problems:
– Markus Maier
– Jorulv Rangnes

Requirements

• Idea is to have rules which are:
– Parsable by computers
– Understandable by humans

• To support both requires a formal language and
consistent style of use.

Requirements

• All constraints in an information model should be
both parsable by computers and understandable by
humans. The algorithmic nature of rules is easily
parsable by computers but without a consistent
style is difficult for human understanding. This
session therefore will attempt to explain the style
of rule writing used within SC4.

EXPRESS Rule writing 7

Rule selection

• Which rule do we choose?
– where rule
– unique rule
– global rule

EXPRESS Rule writing 8

Where rules

• Used for constraints to be tested for each and
every instance of an entity or defined type.

EXPRESS Rule writing 9

Unique rules

• Used for constraints on the whole population of an
entity when constraint is based upon unique values
for attributes of that entity or it’s supertypes.

EXPRESS Rule writing 10

Global rules

• Used when constraint cannot be specified by the
previous two methods.

Example 1

• Constrain the following such that there can only
be one instance of employee with position of
general_manager.

TYPE job_title = ENUMERATION OF (general_manager, manager, worker);
END_TYPE;

ENTITY employee;
 name : person_name;
 position : job_title;
END_ENTITY;

Example 1: Answer

• We cannot use a local rule since we need access to
all instances (to check there is only one).

• We cannot use a unique rule on position since this
would also constrain there to be only one manager
and one worker.

• Therefore we must write a global rule to check
this constraint.

Example 2

• Constrain the following such that no two cars can
have the same serial number if they are
manufactured by the same manufacturer.

ENTITY car;
 manufactured_by : manufacturer;
 serial_number : INTEGER;
END_ENTITY;

Example 2: Answer

• We cannot use a local rule since we need access to
all instances.

• We cannot use a unique on serial number since
this would constrain all manufacturers to use
unique serial numbers.

• We can use unique on the combination of serial
number and manufacturer.

• We could write a global rule, but this constraint is
easier stated in a unique clause.

Example 3

• Constrain the following such that only valid dates
are allowed (ignoring leap years).

ENTITY date;
 day : INTEGER;
 month : INTEGER;
END_ENTITY;

Example 3: Answer

• Since all the attributes required are local, and we
don’t need access to each instance individually
this can be written using a WHERE rule.

Formulating where rules

• simple arithmetic expression
• function call
• structured aggregate test
• Dealing with indeterminate (?) values

Formulating where rules

• Uses of the where rule:
• Domain constraint, ensuring valid values for

attributes or combinations of attributes.
• Aggregate element constraints, ensuring all

elements of an aggregate obey a constraint.
• Context constraint, ensuring that the type of an

attribute is constrained within a AP.

Simple arithmetic expression

• Example 3 could be written as a domain constraint
as follows:

ENTITY date;
 day : INTEGER;
 month : INTEGER;
WHERE
 valid_month : { 1 <= month <= 12 } ;
 valid_day : valid_date(day, month);
END_ENTITY;

• This relies on a function call to calculate if a date
is valid or not with respect to the month.

Function call
FUNCTION valid_date (day, month : INTEGER) : BOOLEAN;
IF NOT {1 <= month <= 12}
THEN
 RETURN FALSE;
ELSE
 CASE month OF
 4, 6, 9, 11 : RETURN ({1 <= day <= 30});
 2 : RETURN ({1 <= day <= 28});
 OTHERWISE : RETURN ({1 <= day <= 31});
 END_CASE;
END_IF;
END_FUNCTION;

Structured aggregate test

• Based upon the following:
• SIZEOF function;

– Returns the size of any aggregate.

• QUERY expression.
– Returns an aggregate which contains those elements

from the input aggregate which pass a specified test.

Structured aggregate tests

• SIZEOF(QUERY (...)) = 0
– There shall be none of the elements for which this test

is true.

• SIZEOF(QUERY (...)) > 0
– There shall be at least one element for which the test is

true.

• SIZEOF(QUERY (...)) = x
– There shall be x elements for which the test is true.

Structured aggregate tests:
example

• The EXPRESS answer for example 1 earlier is:
RULE one_general_manager FOR (employee);
WHERE
 SIZEOF(QUERY(emp <* employee | emp.position = general_manager)) = 1;
END_RULE;

• “employee” is the set of all employee instances
within the system.

• The QUERY results in a set of general_managers.
• SIZEOF() = 1, means there is only one.

Structured aggregate: Exercise

• Write a rule to ensure that there are containers
that are loaded with sugar in the population of
ships.

ENTITY ship; ENTITY container;
 load : SET OF container; content: cargo;
END_ENTITY; END_ENTITY;
TYPE cargo = ENUMERATION OF (sugar, flour, empty);
END_TYPE;
RULE sugar_carriers FOR (ship);
 WHERE ????

Structured aggregate: Exercise
answer

RULE sugar_carriers FOR(ship);
 WHERE
 WR1: SIZEOF(QUERY(a_ship <* ship |
 SIZEOF(QUERY(a_container <* a_ship.load |
 a_container.content = sugar
))>0
))>0;
END_RULE;

Dealing with indeterminate (?) 1

• May have optional attributes within an entity or
optional elements in an array.

• May be due to attributes not being present as
expected in instances.

• Need to be able to test if these exist (have a value)
before using them or provide a default value.

EXPRESS Rule writing 27

Dealing with indeterminate (?) 2

• EXPRESS provides the EXISTS function for this
purpose.

• EXPRESS also provides NVL to allow usage of
default values if source is indeterminate.

• Indeterminate in a logical expression is handled as
UNKNOWN

• This leads to the following rule format:
(EXISTS(A) AND ((* tests using A*)) OR NOT EXISTS(A)

Reading complex rules

• Use of a logical approach
• Some examples

Use of a logical approach

• Most rules can be treated as Logic predicates
wr1: SIZEOF(QUERY (style1 <* SELF.styles | (NOT (SIZEOF(QUERY (

style2 <* (SELF.styles - style1) | (NOT ((TYPEOF(style1) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +
'EXTERNALLY_DEFINED_STYLE'] * TYPEOF(style1)) = 1))))) = 0)))) =
0;

Use of a logical approach

wr1: SIZEOF(QUERY (style1 <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles - style1) | (NOT ((TYPEOF(style1) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +
'EXTERNALLY_DEFINED_STYLE'] * TYPEOF(style1)) = 1))))) = 0)))) =
0;

• intersect the type of style1 with a known set of
type names

Use of a logical approach

wr1: SIZEOF(QUERY (style1 <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles - style1) | (NOT ((TYPEOF(style1) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +
'EXTERNALLY_DEFINED_STYLE'] * TYPEOF(style1)) = 1))))) = 0)))) =
0;

• style1 is either a surface_style_usage or an
externally_defined_style (but not both!)

Use of a logical approach

wr1: SIZEOF(QUERY (style1 <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles - style1) | (NOT ((TYPEOF(style1) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +
'EXTERNALLY_DEFINED_STYLE'] * TYPEOF(style1)) = 1))))) = 0)))) =
0;

• style1 not the same as style2

Use of a logical approach

wr1: SIZEOF(QUERY (style1 <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles - style1) | (NOT ((TYPEOF(style1) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +
'EXTERNALLY_DEFINED_STYLE'] * TYPEOF(style1)) = 1))))) = 0)))) =
0;

• style1 the same as style2 and type of style1 neither
surface_style_usage nor externally_defined_style

Use of a logical approach

wr1: SIZEOF(QUERY (style1 <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles - style1) | (NOT ((TYPEOF(style1) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +
'EXTERNALLY_DEFINED_STYLE'] * TYPEOF(style1)) = 1))))) = 0)))) =
0;

• There must not exist a style1 the same as style2
where the type of style1 is neither
surface_style_usage nor externally_defined_style

Use of a logical approach

wr1: SIZEOF(QUERY (style1 <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles - style1) | (NOT ((TYPEOF(style1) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +
'EXTERNALLY_DEFINED_STYLE'] * TYPEOF(style1)) = 1))))) = 0)))) =
0;

• There must exist a style1 the same as style2 where
the type of style1 is neither surface_style_usage
nor externally_defined_style

Use of a logical approach

wr1: SIZEOF(QUERY (style1 <* SELF.styles | (NOT (SIZEOF(QUERY (
style2 <* (SELF.styles - style1) | (NOT ((TYPEOF(style1) <>
TYPEOF(style2)) OR (SIZEOF(['EXPLICIT_DRAUGHTING.' +
'SURFACE_STYLE_USAGE', 'EXPLICIT_DRAUGHTING.' +
'EXTERNALLY_DEFINED_STYLE'] * TYPEOF(style1)) = 1))))) = 0)))) =
0;

• For each style in styles there shall not exist two
styles the same when the type of the style is
neither surface_style_usage nor
externally_defined_style

Examples
wr1: SIZEOF(['EXPLICIT_DRAUGHTING.TEXT_LITERAL',
 'EXPLICIT_DRAUGHTING.ANNOTATION_TEXT',
 'EXPLICIT_DRAUGHTING.ANNOTATION_TEXT_CHARACTER',
 'EXPLICIT_DRAUGHTING.DEFINED_CHARACTER_GLYPH',
 'EXPLICIT_DRAUGHTING.COMPOSITE_TEXT']
 * TYPEOF(SELF\styled_item.item)) > 0;

wr1: ((NOT closed_curve) AND
(SIZEOF(QUERY (temp <* segments | (temp.transition = discontinuous))) = 1))
OR (closed_curve AND (SIZEOF(QUERY (temp <* segments | (temp.transition

= discontinuous))) = 0));

EXPRESS Rule writing 38

Writing functions

• Make sure all variables are initialised before use
• Make sure you deal with the unexpected, i.e.

indeterminate values being passed as parameters
or attributes of parameters.

EXPRESS Rule writing 39

Common problems

• The following are examples of problems which
have been detected in SC4 parts.

• Corrections, if supplied, are in green

String manipulation1

• Often seen rules with typographical problems (line
length) adding STRINGS:

wr1: SIZEOF(QUERY (a <* approval | (NOT
 (SIZEOF(USEDIN(a, 'EXPLICIT_DRAUGHTING.' +
 'APPROVAL_ASSIGNMENT.' +
 'ASSIGNED_APPROVAL')) >= 1)))) = 0;

• What is being created here is the role name:
EXPLICIT_DRAUGHTING.APPROVAL_ASSIGNMENT.ASSIGNED_APPROVAL

String manipulation2

• Here addition is incorrect, it should have been a ‘,’
as an element separator:

'request_date' : IF SIZEOF (e.items) <>
 SIZEOF (QUERY (x <* e.items |
 SIZEOF (
 ['CONFIG_CONTROL_DESIGN.CHANGE_REQUEST' +
 'CONFIG_CONTROL_DESIGN.START_REQUEST'] *
 TYPEOF (x)) = 1))
 THEN RETURN(FALSE);
 END_IF;

String manipulation2

• Here addition is incorrect, it should have been a ‘,’
as an element separator:

'request_date' : IF SIZEOF (e.items) <>
 SIZEOF (QUERY (x <* e.items |
 SIZEOF (
 ['CONFIG_CONTROL_DESIGN.CHANGE_REQUEST',
 'CONFIG_CONTROL_DESIGN.START_REQUEST'] *
 TYPEOF (x)) = 1))
 THEN RETURN(FALSE);
 END_IF;

EXPRESS Rule writing 43

Group reference1

• Trying to access attributes not declared in the
entity referred to by a group reference

 ENTITY composite_curve_on_surface
 SUPERTYPE OF(boundary_curve) SUBTYPE OF (composite_curve);
DERIVE
 basis_surface : SET[0:2] OF surface := get_basis_surface(SELF);
 WHERE
 …
END_ENTITY;
n := SIZEOF(c\composite_curve_on_surface.segments);
n := SIZEOF(c\composite_curve.segments); should have been used

EXPRESS Rule writing 44

Group reference2

• Returning a group reference from a function
returns only a part of an instance!

RETURN (f\geometric_representation_item);
RETURN (f); should be used since f will be a geometric_representation_item

EXPRESS Rule writing 45

Bags and Sets

• Bags are not compatible with sets, you cannot
assign a bag value to a set variable.

LOCAL
 x : SET OF symbol_representation_relationship;
END_LOCAL;
 x := USEDIN(relation\representation_relationship.rep_1,
 'REPRESENTATION_SCHEMA.'+
 'REPRESENTATION_RELATIONSHIP.'+ 'REP_2');
 x := bag_to_set(USEDIN(relation\representation_relationship.rep_1,
 'REPRESENTATION_SCHEMA.'+
 'REPRESENTATION_RELATIONSHIP.'+ 'REP_2'));

EXPRESS Rule writing 46

Role names

• Rolenames have a specific format as follows:
schema_name.entity_name.attribute_name

ENTITY shape_representation_relationship
 SUBTYPE OF (representation_relationship);
WHERE
...
local_srr := local_srr +
bag_to_set(USEDIN(shape_representation_set[i],
 'PRODUCT_PROPERTY_REPRESENTATION_SCHEMA.'+
 'SHAPE_REPRESENTATION_RELATIONSHIP.REP_1'));
 'PRODUCT_PROPERTY_REPRESENTATION_SCHEMA.'+
 'REPRESENTATION_RELATIONSHIP.REP_1'));

EXPRESS Rule writing 47

Partial instantiation 1

• Entity assignment of requires valid complex
instance

 ENTITY direction
 SUBTYPE OF (geometric_representation_item);
 direction_ratios : LIST [2:3] OF REAL;
 WHERE
...
v := direction([0.0,1.0,0.0]);
v := representation_item('') || geometric_representation_item() ||
 direction([0.0,1.0,0.0]);
The first part could be replaced by a constant as done now in 10303-42.

EXPRESS Rule writing 48

Partial instantiation 2

• Comparison of an instance with a partial complex
entity value not defined

FUNCTION first_proj_axis
 (z_axis, arg: direction): direction;
...
IF z_axis <> direction([1,0,0]) THEN
IF z_axis\direction <> direction([1,0,0]) THEN
assuming we only wish to test the direction part.

EXPRESS Rule writing 49

Assignment to un-initialised
variables 1

• The following is undefined

LOCAL
 result : direction ;
END_LOCAL;

 IF (vec.dim <> 2) OR NOT EXISTS (vec) THEN
 RETURN(?);
 ELSE
 result.direction_ratios[1] := -vec.direction_ratios[2];

EXPRESS Rule writing 50

Assignment to un-initialised
variables 1

• It is defined only if we initialise the variable

LOCAL
 result : direction := representation_item('') ||
 geometric_representation_item() ||
 direction([0.0,0.0,0.0]);
END_LOCAL;

 IF (vec.dim <> 2) OR NOT EXISTS (vec) THEN
 RETURN(?);
 ELSE
 result.direction_ratios[1] := -vec.direction_ratios[2];

EXPRESS Rule writing 51

Assignment to un-initialised
variables 2

LOCAL
 u : LIST [3:3] OF direction;
END_LOCAL;
u[3] := NVL(normalise(axis),direction([0,0,1]));
u[1] := first_proj_axis(u[3],ref_direction);
u[2] := normalise(cross_product(u[3],u[1])).orientation;

EXPRESS Rule writing 52

Assignment to un-initialised
variables 2

LOCAL
 u1, u2, u3 : direction;
 u : LIST [3:3] OF direction;
END_LOCAL;
u3 := NVL(normalise(axis), representation_item('') ||
 geometric_representation_item() || direction([0,0,1]));
u1 := first_proj_axis(u3,ref_direction);
u2 := normalise(cross_product(u3,u1)).orientation;
u := [u1, u2, u3];

EXPRESS Rule writing 53

Local variables not needed for
repeat loops

• Increment control is implicitly declared
 LOCAL

 i : INTEGER;
 END_LOCAL;

 REPEAT i := 1 TO ndim;
...

 END_REPEAT;

• Recommendation is to remove the local
declaration of i.

EXPRESS Rule writing 54

Over to you!

• Formal part of this session is now finished
• For the remainder of the time we will work

together to resolve problems you have in your
schemas.

